
No Coherence? No Problem!
Virtual Shared Memory for MPSoCs

Tobias Langer +, Jonas Rabenstein +, Timo Hönig *, 
Wolfgang Schröder-Preikschat +

+ Friedrich-Alexander-University Erlangen Nuremberg

* Ruhr University Bochum



Increasing heterogeneity memory architecture

Great changes in computer architectures

Increases in parallelism
Increases in main memory size and performance

Non-volatile RAM with large, slow memory

High bandwidth memory fast memory local to the CPUs

Parallelism and new memory technologies require architectural changes

Tobias Langer, et al. No Coherence? No Problem! 1



Tile-based systems

Organization in tiles
Multiple cores
Shared scratchpad memory
Local bus
Cache coherent
Network adapter

System interconnect realized as NoC
Communication traverses multiple hops
Further away = higher latencies
No cache coherency

⇒ Effectively non-coherent NUMA

...

L1$ L1$ L1$

Bus

SRAM Network

Tobias Langer, et al. No Coherence? No Problem! 2



Tile-based systems

Organization in tiles
Multiple cores
Shared scratchpad memory
Local bus
Cache coherent
Network adapter

System interconnect realized as NoC
Communication traverses multiple hops
Further away = higher latencies
No cache coherency

⇒ Effectively non-coherent NUMA

...

L1$ L1$ L1$

Bus

SRAM Network

Tobias Langer, et al. No Coherence? No Problem! 2



What is a suitable programming model?

Shared Memory?
Requires implicit synchronization

7 Requires coherency

Message Passing and PGAS?
Requires explicit communication

3 Require no coherency

Message passing is no “silver bullet”
Explicit communication not always suitable

Complicated for complex data structures

High serialization/deserialization costs

...

L1$ L1$ L1$

Bus

SRAM Network

Tobias Langer, et al. No Coherence? No Problem! 3



What is a suitable programming model?

Shared Memory?
Requires implicit synchronization

7 Requires coherency
Message Passing and PGAS?

Requires explicit communication
3 Require no coherency

Message passing is no “silver bullet”
Explicit communication not always suitable

Complicated for complex data structures

High serialization/deserialization costs

...

L1$ L1$ L1$

Bus

SRAM Network

Tobias Langer, et al. No Coherence? No Problem! 3



What is a suitable programming model?

Shared Memory?
Requires implicit synchronization

7 Requires coherency
Message Passing and PGAS?

Requires explicit communication
3 Require no coherency

Message passing is no “silver bullet”
Explicit communication not always suitable

Complicated for complex data structures

High serialization/deserialization costs

...

L1$ L1$ L1$

Bus

SRAM Network

Tobias Langer, et al. No Coherence? No Problem! 3



Software-based coherency

Operating and runtime systems adapt to NUMA platforms
Page placement and migration strategies

First touch policies

NUMA-awareness in allocators, schedulers, locking algorithms, …

⇒ Cross-domain coherency is not necessary most of the time
Provide software component to implement coherency protocol if needed

No hardware coherency mechanism required

⇒ Make use of techniques invented for Virtual Shared Memory

Tobias Langer, et al. No Coherence? No Problem! 4



Software-based coherency

Operating and runtime systems adapt to NUMA platforms
Page placement and migration strategies

First touch policies

NUMA-awareness in allocators, schedulers, locking algorithms, …

⇒ Cross-domain coherency is not necessary most of the time
Provide software component to implement coherency protocol if needed

No hardware coherency mechanism required

⇒ Make use of techniques invented for Virtual Shared Memory

Tobias Langer, et al. No Coherence? No Problem! 4



Software-based coherency

Operating and runtime systems adapt to NUMA platforms
Page placement and migration strategies

First touch policies

NUMA-awareness in allocators, schedulers, locking algorithms, …

⇒ Cross-domain coherency is not necessary most of the time
Provide software component to implement coherency protocol if needed

No hardware coherency mechanism required

⇒ Make use of techniques invented for Virtual Shared Memory

Tobias Langer, et al. No Coherence? No Problem! 4



Memory page cache

Release

Acquire

11
11

22
22

33
33

44
44

55
55

33
33

11
11

22
22

Tobias Langer, et al. No Coherence? No Problem! 5



Memory page cache

Release

Acquire

11
11

22
22

33
33

44
44

55
55

33
33

11
11

22
22

1

Tobias Langer, et al. No Coherence? No Problem! 5



Memory page cache

Release

Acquire

11
11

22
22

33
33

44
44

55
55

33
33

11
11

22
22

1

2

Tobias Langer, et al. No Coherence? No Problem! 5



Memory page cache

Release

Acquire

11
11

22
22

33
33

44
44

55
55

33
33

11
11

22
22

1

2

3

Tobias Langer, et al. No Coherence? No Problem! 5



Memory page cache

Release

Acquire

11
11

22
22

33
33

44
44

55
55

33
33

11
11

22
22

1

2
4

DMA

11
11

3

Tobias Langer, et al. No Coherence? No Problem! 5



Memory page cache

Release

Acquire

11
11

22
22

33
33

44
44

55
55

33
33

11
11

22
22

1

2
4

DMA

11
11

3

5

Tobias Langer, et al. No Coherence? No Problem! 5



Coherency protocol

Release

Acquire

11
11

22
22

33
33

44
44

55
55

33
33

11
11

22
22

11
11

77
22

1

Tobias Langer, et al. No Coherence? No Problem! 5



Coherency protocol

Release

Acquire

11
11

22
22

33
33

44
44

55
55

33
33

11
11

22
22

11
11

77
22

1

77
22

2

Tobias Langer, et al. No Coherence? No Problem! 5



Coherency protocol

Release

Acquire

11
11

22
22

33
33

44
44

55
55

33
33

11
11

22
22

11
11

77
22

77
22

77
22

1

Tobias Langer, et al. No Coherence? No Problem! 5



Coherency protocol

Release

Acquire

11
11

22
22

33
33

44
44

55
55

33
33

11
11

22
22

77
22

77
22

77
22

77
22

Tobias Langer, et al. No Coherence? No Problem! 5



Synchronization of multiple writers

Multiple writers protocol
Use diff sets to write back

⇒ Provide golden copy per page
⇒ Calculate diff against golden copy
⇒ Apply diff on original copy

Requires properly synchronized data
accesses

Tobias Langer, et al. No Coherence? No Problem! 6



Synchronization of multiple writers

Multiple writers protocol
Use diff sets to write back

⇒ Provide golden copy per page
⇒ Calculate diff against golden copy
⇒ Apply diff on original copy

Requires properly synchronized data
accesses

1

Tobias Langer, et al. No Coherence? No Problem! 6



Synchronization of multiple writers

Multiple writers protocol
Use diff sets to write back

⇒ Provide golden copy per page
⇒ Calculate diff against golden copy
⇒ Apply diff on original copy

Requires properly synchronized data
accesses

1

2

Tobias Langer, et al. No Coherence? No Problem! 6



Synchronization of multiple writers

Multiple writers protocol
Use diff sets to write back

⇒ Provide golden copy per page
⇒ Calculate diff against golden copy
⇒ Apply diff on original copy

Requires properly synchronized data
accesses

1

2

3

Tobias Langer, et al. No Coherence? No Problem! 6



Synchronization of multiple writers

Multiple writers protocol
Use diff sets to write back

⇒ Provide golden copy per page
⇒ Calculate diff against golden copy
⇒ Apply diff on original copy

Requires properly synchronized data
accesses

1

2

3

Tobias Langer, et al. No Coherence? No Problem! 6



Evaluation Setup

FPGA prototype
4x4 tile design

1 tile used for memory only

3 SPARC Leon 3 cores for applications

⇒ total of 45 application cores

8 MB SRAM per tile

2 GB DRAM shared memory

direct-mapped 130kB L2 cache

...

L1$ L1$ L1$

Bus

SRAM Network

Coherency system
Page cache with 256 entries

Managed with LRU policy

Tobias Langer, et al. No Coherence? No Problem! 7



STREAM Benchmark

12 24 48 96 19
2

38
4

76
8

15
36 30

72
61
44

12
28
8

24
57
6

0
10
20
30
40
50
60
70

working set size (KiB)

vi
rt
ua
lb
an
dw
id
th
(M
iB
/s
)

L2C
VSM

Tobias Langer, et al. No Coherence? No Problem! 8



Splash-3 Benchmark – LU Benchmark

1 2 4 8 16 32
0

20

40

60

80

number of threads

ru
nt
im
e
(s
)

Tobias Langer, et al. No Coherence? No Problem! 9



Conclusion

Software-based coherency systems for tile-based MPSoCs

On-demand coherency based on Virtual Shared Memory techniques

Replacement for hardware-based coherency strategies

⇒ Allows for hardware designs without coherency protocols

Are we there yet?
Yes

Software-based cache coherency is feasible

Restrictions: no atomic operations for shared data

… and No
Expensive due to frequent diff and copy operations

Tobias Langer, et al. No Coherence? No Problem! 10



Conclusion

Software-based coherency systems for tile-based MPSoCs

On-demand coherency based on Virtual Shared Memory techniques

Replacement for hardware-based coherency strategies

⇒ Allows for hardware designs without coherency protocols

Are we there yet?
Yes

Software-based cache coherency is feasible

Restrictions: no atomic operations for shared data

… and No
Expensive due to frequent diff and copy operations

Tobias Langer, et al. No Coherence? No Problem! 10



Future Work

Reduce coherency system overheads
Write back changes ahead of time

Application of additional hardware acceleration
Difference set calculation and transfer are ideal for near-memory computation

Hybrid caching approach
Use currently unused L2 cache for unshared data

Use software-based mechanism for shared data

However, reduces benefits from exploiting the page cache

Tobias Langer, et al. No Coherence? No Problem! 11



Thank you for your attention!



Conclusion

Software-based coherency systems for tile-based MPSoCs

On-demand coherency based on Virtual Shared Memory techniques

Replacement for hardware-based coherency strategies

⇒ Allows for hardware designs without coherency protocols

Are we there yet?
Yes

Software-based cache coherency is feasible

Restrictions: no atomic operations for shared data

… and No
Expensive due to frequent diff and copy operations

Tobias Langer, et al. No Coherence? No Problem! 13


	Motivation
	Approach
	Evaluation
	Conclusion

